已知函数y=sin²x+2sinxcosx-3cos²x,x属于R (1)求函数的最小正周期 (2)求函数的最大值
展开全部
解:y=sin^2-cos^2x+sin2x-2cos^2x
=sin2x-cos2x-2cos^2x+1-1
=sin2x-cos2x-(2cos^2x-1)-1
=sin2x-2cos2x-1
=√1^2+(-2)^2sin(2x+α)-1
=√5sin(2x+α)-1(这个α不需要知道是多少)
周期T=2π/2=π
(2)化简过程在上面
当sin(2x+α)=1时,
ymax=√5-1
不懂,请追问,祝愉快O(∩_∩)O~
补充一下知识asinx+bsinx=√(a^2+b^2)sin(x+α)
=sin2x-cos2x-2cos^2x+1-1
=sin2x-cos2x-(2cos^2x-1)-1
=sin2x-2cos2x-1
=√1^2+(-2)^2sin(2x+α)-1
=√5sin(2x+α)-1(这个α不需要知道是多少)
周期T=2π/2=π
(2)化简过程在上面
当sin(2x+α)=1时,
ymax=√5-1
不懂,请追问,祝愉快O(∩_∩)O~
补充一下知识asinx+bsinx=√(a^2+b^2)sin(x+α)
追问
嗯,我想问2cos^2x这个是怎么来的,不会
还有=√5sin(2x+α)-1这个为什么是√5 ,其实 √其他数应该也可以化简吧,为什么是√5
展开全部
y=(1-cos2x)/2 + sin2x - 3(1+cos2x)/2
=sin2x -2cos2x -1
= √5[(√5/5)sin2x -(2√5/5)cos2x] -1
令 cosφ=√5/5,sinφ=2√5/5,
则y=√5(sin2xcosφ - cos2xsinφ) -1
=√5sin(2x-φ) -1
从而
(1)最小正周期为T=2π/2=π,
(2)最大值为 √5 -1
=sin2x -2cos2x -1
= √5[(√5/5)sin2x -(2√5/5)cos2x] -1
令 cosφ=√5/5,sinφ=2√5/5,
则y=√5(sin2xcosφ - cos2xsinφ) -1
=√5sin(2x-φ) -1
从而
(1)最小正周期为T=2π/2=π,
(2)最大值为 √5 -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询