已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形

尽量简单点~... 尽量简单点~ 展开
初宛亦4J
2012-08-19 · TA获得超过1275个赞
知道小有建树答主
回答量:183
采纳率:0%
帮助的人:205万
展开全部
作线段AB的垂直平分线,垂足为D,且与BC相交于点E,易证△AED≌△BED.
∴AD= AB/2=2AC/2=AC,∠B=∠EAD.
∵∠BAC=2∠B,∠EAD+∠EAC=∠BAC,
∴∠EAC=∠EAD.
在△AEC和△AED中,AE=AE,∠EAC=∠EAD,AC=AD,
∴△AEC≌△AED.
∴∠C=∠EDA.
∵∠EDA=90°,
∴∠C=90°.
故△ABC是直角三角形.
追问
这种回答貌似有点多,我想要新的做法
梦梦隆
2012-08-25 · TA获得超过196个赞
知道答主
回答量:49
采纳率:0%
帮助的人:33.2万
展开全部
过A作∠CAB的角平 分线,交 BC于D,过D作DE⊥AB于E
­∵∠BAC=2∠B∴∠CAD=∠DAB=∠B
在△DAE和△DBE中∠DAE=∠B,∠DEA=∠DEB=90 °,DE=DE∴△DAE≌△DBE(AAS)
∴AE =BE=½AB=AC
在△ACD和△AED中AC=AE,∠CAD=∠EAD,AD=AD∴△ACD≌△AED(SAS) ­∴∠C=∠DEA=90°∴△ABC为直角三角形
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
圣天太平
2012-08-19 · TA获得超过3964个赞
知道小有建树答主
回答量:1078
采纳率:80%
帮助的人:734万
展开全部
解:∵∠BAC=∠B
设∠B=α,则∠BAC=2α,∠C=180°-3α
∵AB=2AC
∴由正弦定理有:AB/sin(180°-3α0=AC/sinα有:2/sin3α=1/sinα→sin3α=2sinα
而sin3α=3sinα-4(sinα)^3
化简得:sinα(1-2sinα)(1+2sinα)=0
再由sinα>0得到:sina=1/2
由题意有:α=30°
因此,△ABC的三个内角为:30°、60°、90°
所以△ABC是直角三角形。
追问
我们没学过正弦定理...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
869310392
2012-08-19 · TA获得超过5433个赞
知道大有可为答主
回答量:2422
采纳率:0%
帮助的人:1953万
展开全部
证明:以C为圆心AC为半径作圆交AB于D,连接CD
AC=CD,得 ∠BAC=∠ADC
而 ∠ADC=∠B+∠BCD,∠BAC=2∠B
则 ∠BCD=∠B 从而 CD=BD
又 AC=CD AB=2AC=AD+BD
所以,得 AC=CD=AD,△ACD为正三角形
∠BAC=2∠B=60°,∠ACB=180°-60°-30°=90°
命题得证。
追问
这个回答很好~!不过我们现在做辅助线一般不做圆
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-08-19
展开全部
过点C作CD垂直AB于点D
因为:90度-∠BAC=∠ACD,90度-∠B=∠BCD
,∠BAC=2∠B
所以2∠ACD=∠BCD
所以∠BAC+∠ACD=∠B+∠BCD=90
所以∠BAC+∠B=∠BCD+∠ACD=90
因为∠ACB=∠BCD+∠ACD
所以∠ACB=90度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式