∫(y^2+xe^(2y))dx+(x^2e^(2y)+1)dy,C是沿第一象限的半圆弧(x-2)^2+y^2=4,由点O(0,0)到点A(4,0)的一段弧

P=y^2+xe^(2y)),对y求导=2y+2xe^(2y)Q=x^2e^(2y)+1,对x求导数=2xe^(2y)I=∮闭环-∫(y=0)=∫∫(-2y)dxdy-∫... P=y^2+xe^(2y)),对y求导=2y+2xe^(2y)
Q=x^2e^(2y)+1,对x求导数=2xe^(2y)
I=∮闭环 -∫(y=0)
=∫∫(-2y)dxdy-∫[4,0]xdx
=-2∫∫ydxdy+8
=-4∫[π/2,0]sinada∫[0,2]dr+8
=8+8=16
正确答案是56/3
求正确解题步骤
展开
看涆余
2012-08-20 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4299万
展开全部
∫[C](y^2+xe^(2y))dx+(x^2e^(2y)+1)dy
P=y^2+xe^(2y),
∂P/∂y=2y+2xe^(2y,
Q=x^2e^(2y)+1,
∂Q/∂x=2xe^(2y),
∂Q/∂x-∂P/∂y=-2y,
补充画一条从(0,0)至A(4,0)直线,则形成一个封闭图形,
根据格林公式,正方向的左边始终是封闭曲线内,反时针方向为正,而题目是顺时针方向,故积分号前应加负号,
路径是半圆,在X轴上半部,y=√[4-(x-2)^2]=√(4x-x^2),
0≤y≤√(4x-x^2),
0≤x≤4,
转成极坐标,0≤r≤4cosθ,
0≤θ≤π/2,
-∮[C]Pdx+Qdy=-∫[D]∫(∂Q/∂x-∂P/∂y)dxdy
=∫[D]∫(2y)dxdy
=2∫[0,4]dx∫[0,√(4x-x^2)] ydy
=2∫[0,4]dx(y^2/2)[[0,√(4x-x^2)]
=∫[0,4](4x-x^2)dx
=(2x^2-x^3/3)[0,4]
=32-64/3
=32/3,
若用极坐标,
∫[D]∫(2y)dxdy
=2∫[0,π/2]d θ ∫[0,4 cosθ]rsinθ rdr
=(2/3)∫[0,π/2] (64cosθ)^3 sinθd θ
=-(128/3)∫[0,π/2] (cosθ)^3d(cosθ)
=-(128/3)(cosθ)^4/4[0,π/2]
=-(32/3)(0-1)
=32/3,与上结果相同,
再加上从(0,0)至(4,0)路径,原是顺时针,现是反时针,故互相抵销,只剩半圆弧,
OA方程为:y=0,(0≤x≤4),
原积分式变为:∫[0,4]xdx=(x^2/2)[0,4]=8,
∴原式=32/3+8=56/3。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式