如图正方体ABCD-A1B1C1D1中,M,N,P分别为DD1,CD,AD的中点,O为A1C1的中点,求证MO⊥面A1C1B
2个回答
展开全部
连结BO、BM、OD'、BD、MA'、MC',设立方体边长为2
∵A'C'=BA'=BC'=2根号2,O是A'C'中点,
∴BO⊥A'C',BO=根号6
∵OD'=根号2,D'M=1,
∴OM=根号3,
∵BD=2根号2,DM=1,
∴BM=3,
∵OB²+OM²=BM²,
∴△OBM是直角三角形,∠BOM=90°,即BO⊥MO,
∵D'A'=D'C',D'M=D'M,∠A'D'M=∠C'D'M=90°,
∴△A'D'M≌△C'D'M,
∴MA'=MC',
∴MO⊥A'C',
∴MO⊥面A1C1B
∵A'C'=BA'=BC'=2根号2,O是A'C'中点,
∴BO⊥A'C',BO=根号6
∵OD'=根号2,D'M=1,
∴OM=根号3,
∵BD=2根号2,DM=1,
∴BM=3,
∵OB²+OM²=BM²,
∴△OBM是直角三角形,∠BOM=90°,即BO⊥MO,
∵D'A'=D'C',D'M=D'M,∠A'D'M=∠C'D'M=90°,
∴△A'D'M≌△C'D'M,
∴MA'=MC',
∴MO⊥A'C',
∴MO⊥面A1C1B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询