如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是? 5
5个回答
展开全部
BF、CE交点为重心,这一点到BC的距离为点D到CB距离的1/3
即下边的 小黑△面积是△BCD的1/3
所以阴影的总面积是:1/2(AC*AB)+1/6(BD*CD)=2/3(cm^2)
不懂的地方可以追问 O(∩_∩)O~
即下边的 小黑△面积是△BCD的1/3
所以阴影的总面积是:1/2(AC*AB)+1/6(BD*CD)=2/3(cm^2)
不懂的地方可以追问 O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你这题目字母错这么多,不过能理解!这个题目很简单!注意比例转换!图形拼凑!
S△BFD=S△BFC=1/4S□ABCD
CE交BF于O
EF/BC=FO/OB=1/2
高相等 S△FOC=1/2 S△OBC
S△OBC=1/6
阴影面积=S△ABC+S△OBC=1/2+1/6=2/3 cm2
S△BFD=S△BFC=1/4S□ABCD
CE交BF于O
EF/BC=FO/OB=1/2
高相等 S△FOC=1/2 S△OBC
S△OBC=1/6
阴影面积=S△ABC+S△OBC=1/2+1/6=2/3 cm2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连结AD交EF和BC于0*H两点,因为∈F为边中点,所以0H=1/4AD=1/4*√2,因为BC=√2,所S△BcH=1/2*BC*0H=1/4,S△ABC=1/2AC*AB=1/2,所以阴影部分面积为两三角形面积和等于3/4cm^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
简单说明:若CE与BF交与O
正方形ABCD的边长为1cm。
则S正方形ABCD=1, SΔ BDC=1/2, SΔ DEF=1/4SΔ BDC=1/4*1/2=1/8
所以S四边形BCFE=1/2-1/8=3/8
因为SΔ FOC=SΔ BOE=1/2SΔ BOC,SΔ EOF=1/4SΔ BOC,
且SΔ FOC+SΔ BOE+SΔ EOF+SΔ BOC=S四边形BCFE=3/8
所以1/2SΔ BOC+1/2SΔ BOC+1/4SΔ BOC+SΔ BOC=3/8
所以SΔ BOC=1/6
所以图中阴影部分的面积为1/2+1/6=2/3平方米
正方形ABCD的边长为1cm。
则S正方形ABCD=1, SΔ BDC=1/2, SΔ DEF=1/4SΔ BDC=1/4*1/2=1/8
所以S四边形BCFE=1/2-1/8=3/8
因为SΔ FOC=SΔ BOE=1/2SΔ BOC,SΔ EOF=1/4SΔ BOC,
且SΔ FOC+SΔ BOE+SΔ EOF+SΔ BOC=S四边形BCFE=3/8
所以1/2SΔ BOC+1/2SΔ BOC+1/4SΔ BOC+SΔ BOC=3/8
所以SΔ BOC=1/6
所以图中阴影部分的面积为1/2+1/6=2/3平方米
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询