4个回答
展开全部
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
希望能帮到你!祝你学习进步,万事如意!
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
希望能帮到你!祝你学习进步,万事如意!
展开全部
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主啊!!~~~这种问题没必要用悬赏吧。。。。。基本上有第一个回答。。。后面的就可以GWN了。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询