已知函数f(x)=sin^2x+2sinxcosx+3cos^x
(1)求函数单调递增区间(2)当x∈[0,4派],函数f(x)最大值和最小值改一下不是[0,4派,是[0,派]]...
(1)求函数单调递增区间 (2)当x∈[0,4派],函数f(x)最大值和最小值
改一下 不是[0,4派,是[0,派]] 展开
改一下 不是[0,4派,是[0,派]] 展开
3个回答
展开全部
f(x)=sin²x+2sinxcosx+3cos²x
=sin2x +2cos²x +1
=sin2x+cos2x +2
=√2[(√2/2)sin2x+(√2/2)cos2x] +2
=√2sin(2x+π/4) +2
(1)令 -π/2+2kπ≤2x+π/4≤π/2+2kπ
解得 -3π/8+kπ≤x≤π/8+kπ
从而 增区间为[-3π/8+kπ,π/8+kπ],k是整数
(2)[0,4π]是四个周期,当然包含f(x)的最大值2+√2和最小值2-√2.
估计可能是x∈[0,π/4],此时,f(x)在[0,π/8]是增,在[π/8,π/4]上减,
从而最大值为f(π/8)=2+√2,最小值为f(π/4)=f(0)=3.
=sin2x +2cos²x +1
=sin2x+cos2x +2
=√2[(√2/2)sin2x+(√2/2)cos2x] +2
=√2sin(2x+π/4) +2
(1)令 -π/2+2kπ≤2x+π/4≤π/2+2kπ
解得 -3π/8+kπ≤x≤π/8+kπ
从而 增区间为[-3π/8+kπ,π/8+kπ],k是整数
(2)[0,4π]是四个周期,当然包含f(x)的最大值2+√2和最小值2-√2.
估计可能是x∈[0,π/4],此时,f(x)在[0,π/8]是增,在[π/8,π/4]上减,
从而最大值为f(π/8)=2+√2,最小值为f(π/4)=f(0)=3.
展开全部
f(x)=1+2sinxcosx+2cos^2x
=sin2x+cos2x+2
=√2sin(2x+派/4)+2
故
=sin2x+cos2x+2
=√2sin(2x+派/4)+2
故
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=sin^2x+2sinxcosx+3cos^2x
=sin^2x+cos^2x+2cos^2x+2sinxcosx
=1+2cos^2x+2sinxcosx
=1+1+cos2x+sin2x
=2+cos2x+sin2x
=2+√2sin(2x+π/4)
(1)求函数单调递增区间
2kπ-π/2≤2x+π/4≤2kπ+π/2
即 kπ-3π/8≤x≤kπ+π/8
(2)当x∈[0,4π],函数f(x)最大值和最小值
最大值为 2+√2
最小值为 2-√2
=sin^2x+cos^2x+2cos^2x+2sinxcosx
=1+2cos^2x+2sinxcosx
=1+1+cos2x+sin2x
=2+cos2x+sin2x
=2+√2sin(2x+π/4)
(1)求函数单调递增区间
2kπ-π/2≤2x+π/4≤2kπ+π/2
即 kπ-3π/8≤x≤kπ+π/8
(2)当x∈[0,4π],函数f(x)最大值和最小值
最大值为 2+√2
最小值为 2-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询