证明不等式 e^x>1+(1+x)ln(1+x)(x>0) ( e^x是指e的x次方 )
本人是这么做的:令f(x)=e^x-(1+x)ln(1+x)-1(求出f(x)>0,就可得出结论)则f(x)在[0,x]上连续,在(0,x)内可导,由中值定理可知:存在a...
本人是这么做的:
令f(x)=e^x-(1+x)ln(1+x)-1 (求出f(x)>0,就可得出结论)
则f(x)在[0,x]上连续,在(0,x)内可导 ,由中值定理可知:存在a属于(0,x),使得 f(x)-f(0)=f‘(x)*a 成立
即 e^x-(1+x)ln(1+x)-1=[e^x-ln(1+x)-1]*a 此处a>0 很明显前部分e^x-ln(1+x)-1 >0的
可知 e^x-(1+x)ln(1+x)-1=[e^x-ln(1+x)-1]*a >0,所以不等式 e^x>1+(1+x)ln(1+x)(x>0) 成立
但是最后一步e^x-ln(1+x)-1 >0 的不会求证?怎么求?很有简单的方法吗? 展开
令f(x)=e^x-(1+x)ln(1+x)-1 (求出f(x)>0,就可得出结论)
则f(x)在[0,x]上连续,在(0,x)内可导 ,由中值定理可知:存在a属于(0,x),使得 f(x)-f(0)=f‘(x)*a 成立
即 e^x-(1+x)ln(1+x)-1=[e^x-ln(1+x)-1]*a 此处a>0 很明显前部分e^x-ln(1+x)-1 >0的
可知 e^x-(1+x)ln(1+x)-1=[e^x-ln(1+x)-1]*a >0,所以不等式 e^x>1+(1+x)ln(1+x)(x>0) 成立
但是最后一步e^x-ln(1+x)-1 >0 的不会求证?怎么求?很有简单的方法吗? 展开
展开全部
e^x-ln(1+x)-1在x大于0时为增函数,且在x等于0时值为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询