设a,b是正整数,9整除(a*a+b*b+a*b),求证3整除a,b的最大公因数 10
2个回答
展开全部
因为9|(a^2+ab+b^2),a^3-b^3=(a-b)(a^2+ab+b^2),所以(a^2+ab+b^2)|(a^3-b^3),
所以9|(a^3-b^3),所以有3|(a^3-b^3),注意对于3的所有模来说,有(-1)^3=(-1) (mod 3)
0^3=0(mod 3),1^3=1(mod 3),所以a与b必定关于3同余,下面只要对三种情况检验即可
(1) a=b=0 (mod 3) 则有9|a^2,9|b^2,9|ab,所以9|(a^2+ab+b^2) 满足题意
(2) a=b=1 (mod 3) 不妨设a=3s+1,b=3t+1,从而(a^2+b^2+ab)=9(s^2+t^2+st+s+t)+3,9不整除a^2+ab+b^2 矛盾
(3) a=b=-1 (mod 3) 不妨设a=3s-1,b=3t-1,从而有(a^2+b^2+ab)=9(s^2+t^2+st-s-t)+3,同样9不整除a^2+b^2+a 矛盾
从而只能有a=b=0(mod 3) 即3|a,3|b
所以9|(a^3-b^3),所以有3|(a^3-b^3),注意对于3的所有模来说,有(-1)^3=(-1) (mod 3)
0^3=0(mod 3),1^3=1(mod 3),所以a与b必定关于3同余,下面只要对三种情况检验即可
(1) a=b=0 (mod 3) 则有9|a^2,9|b^2,9|ab,所以9|(a^2+ab+b^2) 满足题意
(2) a=b=1 (mod 3) 不妨设a=3s+1,b=3t+1,从而(a^2+b^2+ab)=9(s^2+t^2+st+s+t)+3,9不整除a^2+ab+b^2 矛盾
(3) a=b=-1 (mod 3) 不妨设a=3s-1,b=3t-1,从而有(a^2+b^2+ab)=9(s^2+t^2+st-s-t)+3,同样9不整除a^2+b^2+a 矛盾
从而只能有a=b=0(mod 3) 即3|a,3|b
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询