设A={x|x^2-px-2=0},B={x|x^2+qx+r=0},A∪B={-2,-1,1},A∩B={-2},求实数p,q,r的值

feidao2010
2012-09-13 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
A∩B={-2}
-2∈A
则 4+2p-2=0
∴ p=-1
x²+x-2=0
(x+2)(x-1)=0
x=-2或x=1
即 A={x|x^2-px-2=0}={1,-2}
∵ A∪B={-2,-1,1},A∩B={-2}
B最多两个元素
∴ B={-2,-1}
即x²+qx+r=0的两个根是-2,-1
利用韦达定理-q=-2+(-1),r=-2*(-1)
∴ q=3,r=2
综上p=-1,q=3,r=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式