如图所示,矩形ABCD中,AB=3,BC=4,将矩形折叠,使C点与A点重合,求折痕EF的长。 2.判断△AEF的形状,

2.判断△AEF的形状,并说明理由... 2.判断△AEF的形状,并说明理由 展开
sz95950
2012-09-23
知道答主
回答量:14
采纳率:0%
帮助的人:5.9万
展开全部
解:连接AF.
∵点C与点A重合,折痕为EF,即EF垂直平分AC,
∴AF=CF,AO=CO,∠FOC=90°.
又∵四边形ABCD为矩形,
∴∠B=90°,AB=CD=3,AD=BC=4.
设CF=x,则AF=x,BF=4-x,
由勾股定理得
AC^2=BC^2+AB^2=52∴AC=5,OC= AC=4 .
∵AB^2+BF^2=AF^2
∴3^2+(4-x)=x^2
∴x= 25/8.
∵∠FOC=90°,
∴OF2=FC2-OC2=(25/8 )^2-(5/2 )^2=(15/8 )^2
∴OF=15/8 .
同理OE= 15/8.
即EF=OE+OF=15/4 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式