在△ABC中,C-A=π/2,sinB=1/3 (1)求sinA的值 (2)设AC=根号6,求△ABC的面积 5
2个回答
展开全部
本题用三角函数来解比较麻烦,不如直接用数值解法简单:
∵A+B+C=π,C-A=π/2
∴A=(π/2-B)/2
∵sinB=1/3
∴B=0.339837
∴A=0.61548
sinA=0.57735
AC=√6,sinB=1/3
sinA/BC=sinB/AC
BC=sinA/sinB×AC=0.57735/0.33333×√6=4.242641
则△ABC的面积为
AC×BC×sinC=√6×0.471405×sin(0.61548+π/2)/2
=4.242641
当然,也可以用三角函数计算,由sinA=sin((π/2-B)/2),根据和差化积等公式计算。
∵A+B+C=π,C-A=π/2
∴A=(π/2-B)/2
∵sinB=1/3
∴B=0.339837
∴A=0.61548
sinA=0.57735
AC=√6,sinB=1/3
sinA/BC=sinB/AC
BC=sinA/sinB×AC=0.57735/0.33333×√6=4.242641
则△ABC的面积为
AC×BC×sinC=√6×0.471405×sin(0.61548+π/2)/2
=4.242641
当然,也可以用三角函数计算,由sinA=sin((π/2-B)/2),根据和差化积等公式计算。
展开全部
sinA=sin(B+C) = sin(pi/2+B+A) = cos(B+A)
sinA = cosB cosA -sinAsinB = cosA sqrt(8)/3 - sinA/3
sinA /cos A = sqrt(8)/4
sinA = 1/sqrt(3)
b = sqrt(6)
sinB/b = sinA/a
a = b sinA/sinB = sqrt(6)/sqrt(3) * 3 = 3sqrt(2)
sinC = sin(pi/2+A) = cosA = sqrt(6)/3
面积=1/2absinC = 3sqrt(12)*sqrt(6)/6 = 3sqrt(2)
sinA = cosB cosA -sinAsinB = cosA sqrt(8)/3 - sinA/3
sinA /cos A = sqrt(8)/4
sinA = 1/sqrt(3)
b = sqrt(6)
sinB/b = sinA/a
a = b sinA/sinB = sqrt(6)/sqrt(3) * 3 = 3sqrt(2)
sinC = sin(pi/2+A) = cosA = sqrt(6)/3
面积=1/2absinC = 3sqrt(12)*sqrt(6)/6 = 3sqrt(2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询