已知函数f(x)=x2+a/x(x≠0,常数a∈R)(1)当a=2时,用单调性定义证明函数f(x)在区间【1,+∞)上是递增的。
1个回答
展开全部
已知函数f(x)=x2+a/x(x≠0,常数a∈R)(1)当a=2时,用单调性定义证明函数f(x)在区间【1,+∞)上是递增的。
证明:令x2>x1>=1
则f(x2)-f(x1)
=x2^2+2/x2-x1^2-2/x1
=(x1+x2)(x2-x1)+2(x1-x2)/(x1x2)
=(x2-x1)[x1+x2-2/(x1x2)]
因为x2>x1>=1
则x2-x1>0
X1+x2>2
2/(x1x2)<2
则x1+x2-2/(x1x2)>0
则f(x2)-f(x1)>0
所以函数在区间【1,+∞)递增
证明:令x2>x1>=1
则f(x2)-f(x1)
=x2^2+2/x2-x1^2-2/x1
=(x1+x2)(x2-x1)+2(x1-x2)/(x1x2)
=(x2-x1)[x1+x2-2/(x1x2)]
因为x2>x1>=1
则x2-x1>0
X1+x2>2
2/(x1x2)<2
则x1+x2-2/(x1x2)>0
则f(x2)-f(x1)>0
所以函数在区间【1,+∞)递增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询