如图,在△ABC中,∠BAC等于90°,延长BA到点D,使AD=1/2AB,点E,F分别为边BC,AC的中点,求证,DF=BE
2个回答
展开全部
由于四边形DAEF是等腰梯形,有∠B=∠D,而AG∥BC有∠B=∠DAG,故有∠D=∠DAG⇒AG=DG.
解答:
如图,过点F作FH∥BC,交AB于点H,
∵FH∥BC,点F是AC的中点,点E是BC的中点,
∴AH=BH= 12AB,EF∥AB.
∵AD= 12AB,
∴AD=AH.
∵CA⊥AB,
∴CA是DH的中垂线.
∴DF=FH.
∵FH∥BC,EF∥AB,
∴四边形HFEB是平行四边形.
∴FH=BE.
∴BE=FD.
解答:
如图,过点F作FH∥BC,交AB于点H,
∵FH∥BC,点F是AC的中点,点E是BC的中点,
∴AH=BH= 12AB,EF∥AB.
∵AD= 12AB,
∴AD=AH.
∵CA⊥AB,
∴CA是DH的中垂线.
∴DF=FH.
∵FH∥BC,EF∥AB,
∴四边形HFEB是平行四边形.
∴FH=BE.
∴BE=FD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询