如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=1/2AB . 连结DE,DF.
展开全部
(1)证明:连接EF,AE.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=1/2AB
又∵AD=1/2AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
∴AF与DE互相平分.
(2)解:在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=1/2BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.
满意请采纳。谢谢! 祝你学习进步
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=1/2AB
又∵AD=1/2AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
∴AF与DE互相平分.
(2)解:在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=1/2BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.
满意请采纳。谢谢! 祝你学习进步
展开全部
(1)证明:连接EF,AE.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=1/2AB.
又∵AD=1/2AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
∴AF与DE互相平分.
(2)解:在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=1/2BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=1/2AB.
又∵AD=1/2AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
∴AF与DE互相平分.
(2)解:在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=1/2BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询