lim[m/(1-x^m)-n/(1-x^n)] X趋向于1

求不用洛必达法则的方法,还没学过... 求不用洛必达法则的方法,还没学过 展开
 我来答
茹翊神谕者

2021-06-14 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1601万
展开全部

简单计算一下即可,答案如图所示

_chenmeng
推荐于2016-12-01 · TA获得超过340个赞
知道小有建树答主
回答量:218
采纳率:0%
帮助的人:89.9万
展开全部
lim[m/(1-x^m)-n/(1-x^n)](x->1)
=lim{ [m*(1-x^n)-n*(1-x^m)]/[(1-x^m)*(1-x^n)]} (x->1)
由1-x^y=1-e^(yln x),x->1时等价无穷小是-yln x;
所以有
lim{ [m*(1-x^n)-n*(1-x^m)]/[(1-x^m)*(1-x^n)]} (x->1)
=lim{ [m*(1-e^(n*ln x))-n*(1-e^(m*ln x))]/[m*n*lnx*lnx]} (x->1)
将lnx换为x,则有x->0+
原式=lim{ [m*(1-e^(n*x))-n*(1-e^(m* x))]/[m*n*x^2]} (x->0+)
=lim{ -[m*ne^(n*x)+n*me^(m* x))]/[2m*n*x]} (x->0+)
=lim{ -[m*n^2*e^(n*x)+n*m^2*e^(m* x))]/[2m*n]} (x->0+)
=(m-n)/2
最后用了洛必达法则
追问
还是要用什么洛必达啊
追答
应该有别的方法,只是后来,感觉用洛必达是显然的。在说了,能解决问题不用有没有学过,用一次,也就算学了。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式