已知 p^2-2p-5=0,5q^2+2q-1=0.其卟p,q为实数,求p^2-(q^2)分之一的值 20
展开全部
5q²+2q-1=0乘以 1/q², 得:
1/q²-2/q-5=0.
此方程与p²-2p-5=0 为同一方程,
因为p不等于1/q,
所以p与q分之一为方程X²-2X-5=0的两个不同根.
那么因为韦达定理:
1/q×p=-5
p+1/q=2
∴(p+1/q)²=4p²+2p×1/q+1/q²=4
(p-q)²+4p×1/q=4
(p-1/q)²=4+4×(-5)=24
p-1/q=±2√6
∴p²-1/q²
=(p+1/q)(p-1/q)
=2×2√6
=4√6或p²-1/q²
=(p+1/q)(p-1/q)
=2×-(2√6)
=-4√6
1/q²-2/q-5=0.
此方程与p²-2p-5=0 为同一方程,
因为p不等于1/q,
所以p与q分之一为方程X²-2X-5=0的两个不同根.
那么因为韦达定理:
1/q×p=-5
p+1/q=2
∴(p+1/q)²=4p²+2p×1/q+1/q²=4
(p-q)²+4p×1/q=4
(p-1/q)²=4+4×(-5)=24
p-1/q=±2√6
∴p²-1/q²
=(p+1/q)(p-1/q)
=2×2√6
=4√6或p²-1/q²
=(p+1/q)(p-1/q)
=2×-(2√6)
=-4√6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询