已知函数f(x)是定义域在[-1,1]上的奇函数,且在区间[-1,0]上单调递减
展开全部
已知函数f(x)为奇函数的域单调递减的间隔[-1,1] [-1,0],如果F(2M-3)+(1-M)> 0,现实的数字米的范围内
解决方案:F(x)在[-1,1]单调递减函数的意义的问题。 (2米-3)+(1-m)的> 0时,第(2m-3)>的-f(1-m)的得到的f =(m-1的),
所以2米-3 <m的1
:
-1 <= 2M-3 <= 1
-1 <= 1-M <= 1
2M-3 M-1 解决方案:1 <=米<= 2,且0 <=米<= 2,且m <2
上面得到的1 <=米<2。
解决方案:F(x)在[-1,1]单调递减函数的意义的问题。 (2米-3)+(1-m)的> 0时,第(2m-3)>的-f(1-m)的得到的f =(m-1的),
所以2米-3 <m的1
:
-1 <= 2M-3 <= 1
-1 <= 1-M <= 1
2M-3 M-1 解决方案:1 <=米<= 2,且0 <=米<= 2,且m <2
上面得到的1 <=米<2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询