3个回答
展开全部
等于,因为他的逆也是对称矩阵,注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1),因为A是对称的,故(A^-1)^T=A^(-1)得证。
实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
扩展资料:
将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)。
定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A'=B。
如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。
参考资料来源:百度百科——实对称矩阵
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
等于,因为他的逆也是对称矩阵
注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)
因为A是对称的,故(A^-1)^T=A^(-1)得证。
注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)
因为A是对称的,故(A^-1)^T=A^(-1)得证。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询