在三角形ABC中,角A,B,C的对边分别为a,b,c且满足(2c-a)cosB-bcosA=0 (1)若b=7,a+c=13,求此三角形... 20
在三角形ABC中,角A,B,C的对边分别为a,b,c且满足(2c-a)cosB-bcosA=0(1)若b=7,a+c=13,求此三角形的面积(2)求根号3×sinA+si...
在三角形ABC中,角A,B,C的对边分别为a,b,c且满足(2c-a)cosB-bcosA=0
(1)若b=7,a+c=13,求此三角形的面积
(2)求 根号3×sinA+sin(C-派/6)的取值范围 展开
(1)若b=7,a+c=13,求此三角形的面积
(2)求 根号3×sinA+sin(C-派/6)的取值范围 展开
展开全部
(2c-a)cosB-bcosA=0
(2sinC-sinA)cosB-sinBcosA=0
2sinCcosB-sinAcosB-sinBcosA=0
2sinCcosB=sinAcosB+cosAsinB
2sinCcosB=sin(A+B)
2sinCcosB=sinC
cosB=1/2
则:B=60°
又:b²=a²+c²-2accosB=a²+c²-ac=(a+c)²-3ac
因b=7、a+c=13,得:ac=40
S=(1/2)acsinB=10√3
√3sinA+sin(C-π/6)
=√3sin(2π/3-C)+sin(C-π/6)
=√3cos(π/6-C)+sin(C-π/6)
=sin(C-π/6)+√3cos(C-π/6)
=2sin(C+π/6)
因为C∈(0,2π/3),则:C+π/6∈(π/6,5π/6),sin(C+π/6)∈(1/2,1],则:
√3sinA+sin(C-π/6)∈(1,2]
(2sinC-sinA)cosB-sinBcosA=0
2sinCcosB-sinAcosB-sinBcosA=0
2sinCcosB=sinAcosB+cosAsinB
2sinCcosB=sin(A+B)
2sinCcosB=sinC
cosB=1/2
则:B=60°
又:b²=a²+c²-2accosB=a²+c²-ac=(a+c)²-3ac
因b=7、a+c=13,得:ac=40
S=(1/2)acsinB=10√3
√3sinA+sin(C-π/6)
=√3sin(2π/3-C)+sin(C-π/6)
=√3cos(π/6-C)+sin(C-π/6)
=sin(C-π/6)+√3cos(C-π/6)
=2sin(C+π/6)
因为C∈(0,2π/3),则:C+π/6∈(π/6,5π/6),sin(C+π/6)∈(1/2,1],则:
√3sinA+sin(C-π/6)∈(1,2]
展开全部
由(2c-a)cosB-bcosA=0得
2ccosB-c=0,
cosB=1/2,
(1)由余弦定理,49=a^+c^-ac=(a+c)^-3ac=169-3ac,
ac=40,
∴此三角形的面积=(1/2)acsinB=10√3.
(2)A+C=2π/3,
√3sinA+sin(C-π/6)=√3sin(2π/3-C)+sin(C-π/6)
=√3(√3/2*cosC+1/2*sinC)+√3/2*sinC-1/2*cosC
=√3sinC+cosC
=2sin(C+π/6),
C∈(0,2π/3),
∴C+π/6∈(π/6,5π/6),
∴所求取值范围是(1,2].
2ccosB-c=0,
cosB=1/2,
(1)由余弦定理,49=a^+c^-ac=(a+c)^-3ac=169-3ac,
ac=40,
∴此三角形的面积=(1/2)acsinB=10√3.
(2)A+C=2π/3,
√3sinA+sin(C-π/6)=√3sin(2π/3-C)+sin(C-π/6)
=√3(√3/2*cosC+1/2*sinC)+√3/2*sinC-1/2*cosC
=√3sinC+cosC
=2sin(C+π/6),
C∈(0,2π/3),
∴C+π/6∈(π/6,5π/6),
∴所求取值范围是(1,2].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2c-a)cosB-bcosA=0
(2sinC-sinA)cosB-sinBcosA=0
2sinCcosB-sinAcosB-sinBcosA=0
2sinCcosB=sinAcosB+cosAsinB
2sinCcosB=sin(A+B)
2sinCcosB=sinC
cosB=1/2
则:B=60°
又:b²=a²+c²-2accosB=a²+c²-ac=(a+c)²-3ac
因b=7、a+c=13,得:ac=40
S=(1/2)acsinB=10√3
√3sinA+sin(C-π/6)
=√3sin(2π/3-C)+sin(C-π/6)
=√3cos(π/6-C)+sin(C-π/6)
=sin(C-π/6)+√3cos(C-π/6)
=2sin(C+π/6)
因为C∈(0,2π/3),则:C+π/6∈(π/6,5π/6),sin(C+π/6)∈(1/2,1],则:
√3sinA+sin(C-π/6)∈(1,2]
(2sinC-sinA)cosB-sinBcosA=0
2sinCcosB-sinAcosB-sinBcosA=0
2sinCcosB=sinAcosB+cosAsinB
2sinCcosB=sin(A+B)
2sinCcosB=sinC
cosB=1/2
则:B=60°
又:b²=a²+c²-2accosB=a²+c²-ac=(a+c)²-3ac
因b=7、a+c=13,得:ac=40
S=(1/2)acsinB=10√3
√3sinA+sin(C-π/6)
=√3sin(2π/3-C)+sin(C-π/6)
=√3cos(π/6-C)+sin(C-π/6)
=sin(C-π/6)+√3cos(C-π/6)
=2sin(C+π/6)
因为C∈(0,2π/3),则:C+π/6∈(π/6,5π/6),sin(C+π/6)∈(1/2,1],则:
√3sinA+sin(C-π/6)∈(1,2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询