如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交半圆于点D,点E是
BD的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.(1)求∠AOD的度数;(2)求证:PD是半圆O的切线....
BD的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线. 展开
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线. 展开
2个回答
展开全部
追问
那么怎样证明四边形PAED是平行四边形呢? 期待你的快速回答!
追答
连接DE和AD
∵E是弧BD是中点,圆心角∠BOD=120°
∴∠BAE=∠EAD=1/2(1/2∠BOD)=1/4×120°=30°(圆周角=1/2圆心角)
∴∠PAE=180°-∠BAE=180°-30°=150°
∵DP∥AE
∴∠PDA=∠EAD=30°
∴∠AED=∠PDA=30°(弦切角=所夹弧上的圆周角)
∴∠PAE+∠AED=150°+30°=180°
∴DE∥PA
∵DP∥AE
∴四边形PAED是平行四边形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询