微积分题目一道求解啊
4个回答
展开全部
证明:∵lim(n→∞)1/n²=0
lim(n→键春嫌∞)1/(2n)²=0
∴ lim(n→∞)[1/森或n²+1/(n+1)²+...+1/(稿手2n)²]=0
lim(n→键春嫌∞)1/(2n)²=0
∴ lim(n→∞)[1/森或n²+1/(n+1)²+...+1/(稿手2n)²]=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个很容易啊。小的是1/(n^2)的极限是0,大的那个陪陵是n/(n^2)极限也是0。所以芦首戚根据夹逼原理得芹隐出命题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询