(1-2/x+1)的x次方,x趋向无穷求极限

丘冷萱Ad
推荐于2017-11-25 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3960万
展开全部
lim[x→∞] (1 - 2/(x+1))^x
=lim[x→∞] [(1 - 2/(x+1))^(-(x+1)/2)]^(-2x/(x+1))
中括号内为第二个重要极限,结果是e,外面的指数极限是-2
=1/e²

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
更多追问追答
追问
可不可以详细点?
这样的可以不?
lim[x→∞] [(1+(-2)/x+1]^(x+1-1)=lim[x→∞] [1+(-2)/x+1]^(x+1)/[(1+(-2)/x+1]=e^(-2)
追答
这个过程已经比较详细了,你这样做也是可以的。
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
笨笨benbe
2012-10-22 · TA获得超过6万个赞
知道大有可为答主
回答量:1255
采纳率:0%
帮助的人:946万
展开全部
答案为:1/(e^2)
过程为:(1-2/x+1)^x={(1-2/x+1)^[-(1+x)/2]}^[-2x/(1+x)]=e^-2=1/(e^2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式