已知函数f(x)=4sinωxcos(ωx+π3)+3(ω>0)的最小正周期为π.(Ⅰ)求f(x)的解析式;(Ⅱ)若y
已知函数f(x)=4sinωxcos(ωx+π3)+3(ω>0)的最小正周期为π.(Ⅰ)求f(x)的解析式;(Ⅱ)若y=f(x)+m在[?π4,π6]的最小值为2,求m值...
已知函数f(x)=4sinωxcos(ωx+π3)+3(ω>0)的最小正周期为π.(Ⅰ)求f(x)的解析式;(Ⅱ)若y=f(x)+m在[?π4,π6]的最小值为2,求m值.
展开
展开全部
(Ⅰ)由f(x)=4sinωxcos(ωx+
)+
,得
f(x)=4sinωx(cosωxcos
?sinωxsin
)+
=2sinωxcosωx?2
sin2ωx+
=sin2ωx+
cos2ωx
=2sin(2ωx+
).
∵T=
=π,∴ω=1
∴f(x)=2sin(2x+
);
(2)y=f(x)+m=2sin(2x+
)+m
∵?
≤x≤
,∴?
≤2x+
≤
π.
当2x+
=?
,即x=?
π |
3 |
3 |
f(x)=4sinωx(cosωxcos
π |
3 |
π |
3 |
3 |
=2sinωxcosωx?2
3 |
3 |
=sin2ωx+
3 |
=2sin(2ωx+
π |
3 |
∵T=
2π |
2ω |
∴f(x)=2sin(2x+
π |
3 |
(2)y=f(x)+m=2sin(2x+
π |
3 |
∵?
π |
4 |
π |
6 |
π |
6 |
π |
3 |
2 |
3 |
当2x+
π |
3 |
π |
6 |
π |
4 |