如图,已知BE,CF是△ABC的高,且BP=AC,CQ=AB,求证:AP⊥AQ。 30

mbcsjs
2012-10-25 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部

∵BE、CF是△ABC的高,即∠AEB=90°,∠AFC=90°,
∴∠ABP+∠BAE=90°,∠ACQ+∠BAE=90°,

∴∠ABE=∠ACQ,
又BP=AC,CQ=AB,
∴△ABP≌△QCA.
∴∠BAP=∠Q,
∵∠Q+∠BAQ=90°,

∴∠BAP+∠BAQ=90°,即∠PAQ=90°,

∴PA⊥AQ.

zzy2238681373
2012-10-25
知道答主
回答量:5
采纳率:0%
帮助的人:3.3万
展开全部
∵∠ABP+∠BAC=∠ACQ+∠BAC=90°
∴∠ABP=∠ACQ
又∵BP=AC,CQ=AB
∴△ABP≌△QCA(边角边)
∴∠BAP=∠CQA
∵∠BAP+∠QAB=90°
∴∠CQA+∠QAB=∠QAP=90°
得AP⊥AQ
追问
这是错的
追答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式