.什么是全微分的形式不变性
3个回答
展开全部
对于多元复合函数的求导,经常使用"链锁法则",这个公式对一般的复合函数而言,是一个很有效的方法,但对于比较复杂的函数的偏导数,变量之间的关系不好区分,而利用多元函数的一阶全微分形式不变性来求,则无需知道变量之间的相互关系,只需知道谁是自变量就可以了,从而简化了计算设y=f(u),u=g(x),如果u=g(x)对x可微,y=f(u)对相应的u可微,则y=f[g(x)]对x可微,为dy
=
f[g(x)]’dx
=
f’(u)g’(x)dx
=
f’(u)du可以知道,无论u是自变量还是别的自变量的可微函数,微分形式dy=f’(u)du保持不变.这就是一阶全微分的形式不变性.
=
f[g(x)]’dx
=
f’(u)g’(x)dx
=
f’(u)du可以知道,无论u是自变量还是别的自变量的可微函数,微分形式dy=f’(u)du保持不变.这就是一阶全微分的形式不变性.
展开全部
设y=f(u),u=g(x),如果u=g(x)对x可微,y=f(u)对相应的u可微,则y=f[g(x)]对x可微,为
dy = f[g(x)]’dx = f’(u)g’(x)dx = f’(u)du
可以知道,无论u是自变量还是别的自变量的可微函数,
微分形式dy=f’(u)du保持不变。
这就是一阶全微分的形式不变性。
dy = f[g(x)]’dx = f’(u)g’(x)dx = f’(u)du
可以知道,无论u是自变量还是别的自变量的可微函数,
微分形式dy=f’(u)du保持不变。
这就是一阶全微分的形式不变性。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |