Z变换的描述

 我来答
杜哥1Kq
2016-05-12 · 超过69用户采纳过TA的回答
知道答主
回答量:169
采纳率:0%
帮助的人:151万
展开全部

Z变换(Z-transform) 将离散系统的时域数学模型——差分方程转化为较简单的频域数学模型——代数方程,以简化求解过程的一种数学工具。Z是个复变量,它具有实部和虚部,常常以极坐标形式表示,即Z=rejΩ,其中r为幅值,Ω为相角。以Z的实部为横坐标,虚部为纵坐标构成的平面称为Z平面,即离散系统的复域平面。离散信号系统的系统函数(或者、称传递函数)一般均以该系统对单位抽样信号的响应的Z变换表示。由此可见,Z变换在离散系统中的地位与作用,类似于连续系统中的拉氏变换
Z变换具有许多重要的特性:如线性、时移性、微分性、序列卷积特性和复卷积定理等等。这些性质在解决信号处理问题时都具有重要的作用。其中最具有典型意义的是卷积特性。由于信号处理的任务是将输入信号序列经过某个(或一系列各种)系统的处理后输出所需要的信号序列,因此,首要的问题是如何由输入信号和所使用的系统的特性求得输出信号。通过理论分析可知,若直接在时域中求解,则由于输出信号序列等于输入信号序列与所用系统的单位抽样响应序列的卷积和,故为求输出信号,必须进行繁琐的求卷积和的运算。而利用Z变换的卷积特性则可将这一过程大大简化。只要先分别求出输入信号序列及系统的单位抽样响应序列的Z变换,然后再求出二者乘积的反变换即可得到输出信号序列。这里的反变换即逆Z变换,是由信号序列的Z变换反回去求原信号序列的变换方式。
当前,已有现成的与拉氏变换表类似的Z表。对于一般的信号序列,均可以由表上直接查出其Z变换。相应地,当然也可由信号序列的Z变换查出原信号序列,从而使求取信号序列的Z变换较为简便易行。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式