一道关于图形角度计算的数学题,求解答
2个回答
展开全部
∠ABD=180°-∠BAD-∠BDA=180°-48°-16°-58°=58°,AB=AD
∠ACB=180°-∠BAC-∠ABC=180°-48°-58°-30°=44°
设AB=AD=1,
正弦定理:
AB/sinACB=AC/sinABC,
AC=ABsinABC/sinACB=1×sin(58°+30°)/sin44°=sin88°/sin44°=2cos44°
余弦定理:
CD²=AC²+AD²-2AC.ADcosDAC
=4cos²44°+1-2×2cos44°cos16°
=4cos44°(cos44°-cos16°)+1
=-8cos44°sin30°sin14°+1
=-4cos44°sin14°+1
=-2[sin58°-sin30°]+1
=2-2sin58°
2(1-sin58°)=2(sin²29°-2sin29°cos29°+cos²29°)=2(cos29°-sin29°)²
CD=√2(cos29°-sin29°)=2(sin45°cos29°-cos45°sin29°)=2sin16°
正弦定理:
CD/sin16°=AD/sinACD
sinACD=ADsin16°/CD=sin16°/2sin16°=1/2,
∠ACD=30°
∠ACB=180°-∠BAC-∠ABC=180°-48°-58°-30°=44°
设AB=AD=1,
正弦定理:
AB/sinACB=AC/sinABC,
AC=ABsinABC/sinACB=1×sin(58°+30°)/sin44°=sin88°/sin44°=2cos44°
余弦定理:
CD²=AC²+AD²-2AC.ADcosDAC
=4cos²44°+1-2×2cos44°cos16°
=4cos44°(cos44°-cos16°)+1
=-8cos44°sin30°sin14°+1
=-4cos44°sin14°+1
=-2[sin58°-sin30°]+1
=2-2sin58°
2(1-sin58°)=2(sin²29°-2sin29°cos29°+cos²29°)=2(cos29°-sin29°)²
CD=√2(cos29°-sin29°)=2(sin45°cos29°-cos45°sin29°)=2sin16°
正弦定理:
CD/sin16°=AD/sinACD
sinACD=ADsin16°/CD=sin16°/2sin16°=1/2,
∠ACD=30°
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正确答案42度,验算一下就知道了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |