平行四边形ABCD中,AB=2BC,E为AB中点,DF⊥BC说明:∠AED=∠=EFB
3个回答
展开全部
因为AB=2BC 所以AE=AD
所以∠ADE=∠AED
延长DE和CB,交于点M
因为BM//AD AE=BE
△AED全等于△BEM
DE=ME
因为△DFM是直角三角形 EF是斜边上的中线
所以EF=ME
∠M=∠EFB ∠M=∠ADE
所以∠EFB=∠ADE=∠AED
所以∠ADE=∠AED
延长DE和CB,交于点M
因为BM//AD AE=BE
△AED全等于△BEM
DE=ME
因为△DFM是直角三角形 EF是斜边上的中线
所以EF=ME
∠M=∠EFB ∠M=∠ADE
所以∠EFB=∠ADE=∠AED
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
嘿嘿 楼主是六中的吧 是就回下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询