如图,在平行四边形ABCD中,角BAD,角BCD的角平分线分别交BC,AD于点E,F,AE,DC的延长线交于点G,AFCG等腰梯形
2个回答
展开全部
解:∵四边形ABCD为平行四边形,
∴∠BAD=∠BCD,
又AE、CF分别为∠BAD、∠BCD的平分线,
∴∠1=∠2=∠4,
又AD∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴CF∥AG,
又AF不平行于CG,
∴四边形AFCG为梯形;
又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,
∴四边形AFCG为等腰梯形(同一底上两个角相等).
∴∠BAD=∠BCD,
又AE、CF分别为∠BAD、∠BCD的平分线,
∴∠1=∠2=∠4,
又AD∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴CF∥AG,
又AF不平行于CG,
∴四边形AFCG为梯形;
又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,
∴四边形AFCG为等腰梯形(同一底上两个角相等).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询