把一副三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=10
,DC=12cm,把三角板DCE绕C顺时针旋转15°,得到△D1CE1,如图2,这时AB与CD1交于O,与D1E1交于F1.求∠OFD12.求AD1长3.若把△D1CE1...
,DC=12cm,把三角板DCE绕C顺时针旋转15°,得到△D1CE1,如图2,这时AB与CD1交于O,与D1E1交于F
1.求∠OFD1
2.求AD1长
3.若把△D1CE1绕C顺似真转30°,的△D2CE2,这时B在△D2CE2内部、外部还是边上,理由 展开
1.求∠OFD1
2.求AD1长
3.若把△D1CE1绕C顺似真转30°,的△D2CE2,这时B在△D2CE2内部、外部还是边上,理由 展开
1个回答
展开全部
(1)根据OFE1=∠B+∠1,易得∠OFE1的度数;
(2)在Rt△AD1O中根据勾股定理就可以求得AD1的长;
(3)设BC(或延长线)交D2E2于点P,Rt△PCE2是等腰直角三角形,就可以求出CB的长,判断B在△D2CE2内.解答:解:(1)如图所示,∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;
(2)∵∠OFE1=120°,
∴∠D1FO=60°,
∵∠CD1E1=30°,
∴∠4=90°,
又∵AC=BC,AB=6,
∴OA=OB=3,
∵∠ACB=90°,
∴CO= AB= ×6=3,
又∵CD1=7,
∴OD1=CD1-OC=7-3=4,
在Rt△AD1O中,AD'=5
(3)点B在△D2CE2内部,
理由如下:设BC(或延长线)交D2E2于点P,
则∠PCE2=15°+30°=45°,
在Rt△PCE2中,CP=根号2 CE2=二分之7根号2 ,
∵CB=3根号2>二分之7根号2 ,即CB<CP,
∴点B在△D2CE2内部.
(2)在Rt△AD1O中根据勾股定理就可以求得AD1的长;
(3)设BC(或延长线)交D2E2于点P,Rt△PCE2是等腰直角三角形,就可以求出CB的长,判断B在△D2CE2内.解答:解:(1)如图所示,∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;
(2)∵∠OFE1=120°,
∴∠D1FO=60°,
∵∠CD1E1=30°,
∴∠4=90°,
又∵AC=BC,AB=6,
∴OA=OB=3,
∵∠ACB=90°,
∴CO= AB= ×6=3,
又∵CD1=7,
∴OD1=CD1-OC=7-3=4,
在Rt△AD1O中,AD'=5
(3)点B在△D2CE2内部,
理由如下:设BC(或延长线)交D2E2于点P,
则∠PCE2=15°+30°=45°,
在Rt△PCE2中,CP=根号2 CE2=二分之7根号2 ,
∵CB=3根号2>二分之7根号2 ,即CB<CP,
∴点B在△D2CE2内部.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询