已知函数f(x)=x-1+a/e∧x(a属于R,e为自然对数的底数)(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴求... 40
已知函数f(x)=x-1+a/e∧x(a属于R,e为自然对数的底数)(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴求a的值,(2)求曲线f(x)的极值...
已知函数f(x)=x-1+a/e∧x(a属于R,e为自然对数的底数)(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴求a的值,(2)求曲线f(x)的极值
展开
展开全部
(Ⅰ)由f(x)=x-1+
a
ex
,得f′(x)=1-
a
ex
,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1-
a
e
=0,解得a=e.
(Ⅱ)f′(x)=1-
a
ex
,
①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以f(x)无极值;
②当a>0时,令f′(x)=0,得ex=a,x=lna,
x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
a
ex
,得f′(x)=1-
a
ex
,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1-
a
e
=0,解得a=e.
(Ⅱ)f′(x)=1-
a
ex
,
①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以f(x)无极值;
②当a>0时,令f′(x)=0,得ex=a,x=lna,
x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询