已知A,B,C,D,E是空间中不同的五点,其中任意四点共面,求证:这五点共面.
1个回答
展开全部
证明:∵A,B,C,D,E是空间中不同的五点,其中任意四点共面,
∴A,B,C,D共面于α,A,B,C,E共面于β,
①若A,B,C三点不共线,则平面α,β有三个不共线的公共点A,B,C,
∴α,β重合,从而五点共面.
②若A,B,C三点共线,设所在直线为l,
依据题意A,B,D,E四点共面,
则直线l在这个平面内,从而C点也在该平面内,
故A,B,C,D,E共面.
综上所述,这五点共面.
∴A,B,C,D共面于α,A,B,C,E共面于β,
①若A,B,C三点不共线,则平面α,β有三个不共线的公共点A,B,C,
∴α,β重合,从而五点共面.
②若A,B,C三点共线,设所在直线为l,
依据题意A,B,D,E四点共面,
则直线l在这个平面内,从而C点也在该平面内,
故A,B,C,D,E共面.
综上所述,这五点共面.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询