8个回答
展开全部
方法一:
第N个三角形数为1+2+3+······+N=(1+N)*N/2
第22个三角形数为1+2+3+······+22=(1+22)*22/2=23*11=253
第24个三角形数为1+2+3+······+24=(1+24)*24/2=25*12=300
300-253=47
方法2:
第N个三角形数为1+2+3+······+N
第22个三角形数为1+2+3+······+22
第24个三角形数为1+2+3+······+24
则第24个三角形数比第22个三角形数多加了23、24
所以第24个三角形数与第22个三角形数的差为23+24=47
第N个三角形数为1+2+3+······+N=(1+N)*N/2
第22个三角形数为1+2+3+······+22=(1+22)*22/2=23*11=253
第24个三角形数为1+2+3+······+24=(1+24)*24/2=25*12=300
300-253=47
方法2:
第N个三角形数为1+2+3+······+N
第22个三角形数为1+2+3+······+22
第24个三角形数为1+2+3+······+24
则第24个三角形数比第22个三角形数多加了23、24
所以第24个三角形数与第22个三角形数的差为23+24=47
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
显然对于第n项的三角形数,他的规律是s(n)=1+2+3+...+n=n*(n+1)/2。
故第24个三角形与第22个三角形的差为
s(24)-s(22)=24*25/2-22*23/2=12*25-11*23=300-253=47
够详细的了,望采纳!
故第24个三角形与第22个三角形的差为
s(24)-s(22)=24*25/2-22*23/2=12*25-11*23=300-253=47
够详细的了,望采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 1+2 1+2+3 ,从1加到n,24个三角形数1+2+3+...+24,22个三角形数1+2+3+...+22,差为24+23=47。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
47,第n个数比n-1大n,如第二个数3比第一个数大2,故第24个数比第23个数大24,第23个数比第22个数大23,合起来为47
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询