如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)

如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DFE;(2)平面BDE⊥平... 如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)直线PA∥平面DFE;(2)平面BDE⊥平面ABC. 展开
 我来答
雪凛fvFM4
推荐于2016-12-01 · TA获得超过135个赞
知道答主
回答量:126
采纳率:0%
帮助的人:127万
展开全部
(1)详见解析; (2) 详见解析.


试题分析:(1) 由线面平行的判定定理可知,只须证PA与平面DEF内的某一条直线平行即可,由已知及图形可知应选择DE,由三角形的中位线的性质易知: DE∥PA ,从而问题得证;注意线PA在平面DEG外,而DE在平面DEF内必须写清楚;(2) 由面面垂直的判定定理可知,只须证两平中的某一直线与另一个平面垂直即可,注意题中已知了线段的长度,那就要注意利用勾股定理的逆定理来证明直线与直线的垂直;通过观察可知:应选择证DE垂直平面ABC较好,由(1)可知:DE⊥AC,再就只须证DE⊥EF即可;这样就能得到DE⊥平面ABC,又DE 平面BDE,从面而有平面BDE⊥平面ABC.
试题解析:(1)因为D,E分别为PC,AC的中点,所以DE∥PA.
又因为PA 平面DEF,DE 平面DEF,所以直线PA∥平面DEF.
(2)因为D,E,F分别人棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE= PA=3,EF= BC=4.
又因为DF=5,故DF 2 =DE 2 +EF 2 ,所以∠DEF=90 ,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.
因为AC∩EF=E,AC 平面ABC,EF 平面ABC,所以DE⊥平面ABC.
又DE 平面BDE,所以平面BDE⊥平面ABC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式