已知函数f(x)=lnx+1x+ax,x∈(0,+∞)(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数
已知函数f(x)=lnx+1x+ax,x∈(0,+∞)(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值...
已知函数f(x)=lnx+1x+ax,x∈(0,+∞)(a为实常数).(1)当a=0时,求函数f(x)的最小值;(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.
展开
1个回答
展开全部
(1)a=0时,f′(x)=
…..(2分)
当0<x<1时f'(x)<0,
当x>1时f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
?
+a=
当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或
,解得:a≤?
∴a的取值范围是(?∞,?
]∪[0,+∞)…(14分)
x?1 |
x2 |
当0<x<1时f'(x)<0,
当x>1时f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
1 |
x |
1 |
x2 |
ax2+x?1 |
x2 |
当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或
|
1 |
4 |
∴a的取值范围是(?∞,?
1 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询