2个回答
展开全部
若是 ∫ <0→π/2> xsin(x^2)dx
则 ∫ <0→π/2> xsin(x^2)dx = (1/2)∫ <0→π/2> sin(x^2)d(x^2)
= - (1/2)[cosx^2] <0→π/2> = (1/2)[1-cos(π^2/4)]
若是 ∫ <0→π/2> x(sinx)^2dx
则 ∫ <0→π/2> x(sinx)^2dx = (1/2) ∫ <0→π/2> x(1-cos2x)dx
= (1/2) ∫ <0→π/2> xdx - (1/2) ∫ <0→π/2> xcos2xdx
= (1/4) [x^2] <0→π/2> - (1/4) ∫ <0→π/2> xdsin2x
= π^2/16 - (1/4)[xsin2x] <0→π/2>+(1/4) ∫ <0→π/2> sin2xdx
= π^2/16 - 0 -(1/8) [cos2x]<0→π/2>
= π^2/16 +1/8
则 ∫ <0→π/2> xsin(x^2)dx = (1/2)∫ <0→π/2> sin(x^2)d(x^2)
= - (1/2)[cosx^2] <0→π/2> = (1/2)[1-cos(π^2/4)]
若是 ∫ <0→π/2> x(sinx)^2dx
则 ∫ <0→π/2> x(sinx)^2dx = (1/2) ∫ <0→π/2> x(1-cos2x)dx
= (1/2) ∫ <0→π/2> xdx - (1/2) ∫ <0→π/2> xcos2xdx
= (1/4) [x^2] <0→π/2> - (1/4) ∫ <0→π/2> xdsin2x
= π^2/16 - (1/4)[xsin2x] <0→π/2>+(1/4) ∫ <0→π/2> sin2xdx
= π^2/16 - 0 -(1/8) [cos2x]<0→π/2>
= π^2/16 +1/8
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询