已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴轴长为直径的园经过椭圆的焦点,...
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴轴长为直径的园经过椭圆的焦点,且三角形PF1F2的周长为4+2根号2.。 (1)已求得椭圆为 x^2/4+y^2/2=1 (2)设直线l是圆O:x^2+y^2=4/3上动点P(x0,y0)(x0*y0不等于0)处的切线,l是椭圆C交与不同的两点Q,R,证明:<QOR的大小是个定值。 x^2/4+y^2/2=1 :请求第二问: (2)设直线l是圆O:x^2+y^2=4/3上动点P(x0,y0)(x0*y0不等于0)处的切线,l是椭圆C交与不同的两点Q,R,证明:<QOR的大小是个定值。
展开
2个回答
展开全部
设Q(x1y1),R(x2,y2),QR:y=kx+n 由题意得|n|/√(k+1)=√(4/3)即3n=4k+4 联立x/4+y/2=1 y=kx+n 得,(2k+1)x+4knx+2n-4=0 所以x1+x2=-4kn/(2k+1) x1x2=(2n-4)/(2k+1) 所以向量OQ*向量OR=x1x2+y1y2=(k+1)x1x2+kn(x1+x2)+n=(3n-4k-4)/(2k+1)=0 所以∠QOR=90°
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设Q(x1y1),R(x2,y2),QR:y=kx+n 由题意得|n|/√(k+1)=√(4/3)即3n=4k+4 联立x/4+y/2=1 y=kx+n 得,(2k+1)x+4knx+2n-4=0 所以x1+x2=-4kn/(2k+1) x1x2=(2n-4)/(2k+1) 所以向量OQ*向量OR=x1x2+y1y2=(k+1)x1x2+kn(x1+x2)+n=(3n-4k-4)/(2k+1)=0 所以∠QOR=90°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |