如图,三角形ABC中,∠ACB=90°,CD,BF分别是它的高,平分线,BE交CD于G,EF⊥AB于F,
2个回答
2012-11-14
展开全部
求证:(1)CE=CG。(2)四边形CEFG是菱形。
(1)∵BE是∠CBA的平分线 ∠EBC=∠EBF EB为共用边,∴△EBC≌△EBF EC=EF
连接交BE于H , 则△CEF为等腰△,∠ECF=∠EFC ∠BEF=∠CEB ∴FC⊥BE ∵CD⊥AB EF⊥AB ∴EF∥CD ∴∠EFC =∠FCD ∠FCD=∠ECF ∴△ECH≌△GCH CE=CG
(2)连接FG ∵EH=HG FG=CG ∴△EHC≌△GHF ∴CE=FG, 且CE∥FG 四边形CEFG四边相等且对边平行是菱形。
(1)∵BE是∠CBA的平分线 ∠EBC=∠EBF EB为共用边,∴△EBC≌△EBF EC=EF
连接交BE于H , 则△CEF为等腰△,∠ECF=∠EFC ∠BEF=∠CEB ∴FC⊥BE ∵CD⊥AB EF⊥AB ∴EF∥CD ∴∠EFC =∠FCD ∠FCD=∠ECF ∴△ECH≌△GCH CE=CG
(2)连接FG ∵EH=HG FG=CG ∴△EHC≌△GHF ∴CE=FG, 且CE∥FG 四边形CEFG四边相等且对边平行是菱形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询