y的二阶导+y=-sin x,怎样解这个微分方程?
1个回答
展开全部
先求齐次解y''+y=0
r^2+1=0
r=正负i
y=Acosx+Bsinx
右端是齐次解的一部分
所以由待定系数法可以假设
y=Cxsinx+Dxcosx
代入原方程
y'=C(sinx+xcosx)+D(cosx-xsinx)
y''=C(cosx+cosx-xsinx)+D(-sinx-sinx-xcosx)
y''+y
=2Ccosx-2Dsinx=-sinx
2C=0
-2D=-1
C=0,D=1/2
所以
y=Acosx+Bsinx+(1/2)xcosx
r^2+1=0
r=正负i
y=Acosx+Bsinx
右端是齐次解的一部分
所以由待定系数法可以假设
y=Cxsinx+Dxcosx
代入原方程
y'=C(sinx+xcosx)+D(cosx-xsinx)
y''=C(cosx+cosx-xsinx)+D(-sinx-sinx-xcosx)
y''+y
=2Ccosx-2Dsinx=-sinx
2C=0
-2D=-1
C=0,D=1/2
所以
y=Acosx+Bsinx+(1/2)xcosx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询