三角形面积公式推导
三角形面积公式推导有三种方法分别是平行四边形、三角形、三角形垂线。
方法一:两个完全相同的三角形可以并迟敏拼成一个平行四边形,三角形的底就是平行四边形的底,高即为平行四边形的高。以下分别为锐角三角形、直角三角形、钝角三角形所拼图形。
方法二:将三角形两边中点连线并剪下一个三角形,通过平移,可以拼成一个平行四边形,可以说平行四边形和三角形高相同,底是2:1的关系,也可以说底相同,高旦握是2:1。观察方向不同,叙述不同,但面积公式相同。
方法三:找到三角形两边的中点,分别做垂线,并沿垂线剪下,得到两个小三角形,通过平移,可以得到一个长方形。长方形的底是三角形底的一半(两条垂线分别为左右两个三角形的中垂线,由中垂线定理可得),高相同,可得三角形面积公式。
按边分三角形:
1、不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。
2、等腰三角形;等腰三角形(isosceles triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。等腰三角形中腰的平方等于高的平方加底的一半的平方。
3、等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。