已知已知数列{an}满足a1=1,an+1=2an+1(n∈N*)证明:1/a1+1/a2+1/a3+...+1/an+1<2/3

百度网友04a0473
2012-11-23 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2534
采纳率:0%
帮助的人:1056万
展开全部
a(n+1)=2an+1
a(n+1)+1=2an+2=2(an+1)

{an+1}为等比数列 公比q=2 首项a1+1=2
an+1=2^n
an=2^n-1
1/an=1/(2^n-1)<1/(2^n-2)<1/2^(n-1)
1/a1+1/a2+...+1/a(n+1)
=1+1/3+1/4+...+1/[2^(n+1)-1]
<1+1/2+1/4+1/8+...+1/2^n
=[1-(1/2)^(n+1)]/(1-1/2)=2-(1/2)^n<2
1/a1+1/a2+...+1/a(n+1)<2
你那个我也不知道哦
jw9811
2012-11-26 · TA获得超过1053个赞
知道小有建树答主
回答量:805
采纳率:0%
帮助的人:257万
展开全部
推荐值得参考,只是从提问者提出的问题看,问题中的结果固然不对,但是我觉得倒是可以改成:证明:1/a1+1/a2+1/a3+...+1/an+1<3/2,以便结果的范围可以更缩小。
过程如下:借鉴楼上结论:an=2^n-1,
∵2^n=(1+1)^n=Cn(0)+Cn(1)+Cn(2)+…Cn(m)…+Cn(n) (0=<m=<n)
【Cn(m)为组合数。此步为二项式的展开过程】
∴当n>=2时,2^n-1>=n+n(n-1)/2=n(n+1)/2
=>1/an=1/(2^n-1)=<2/[n(n+1)]=2[1/n-1/(n+1)] 恒成立;
∴ 1/a1+1/a2+1/a3+...+1/an+1=1+1/a2+1/a3+...+1/an+1
=<1+2(1/2-1/3)+2(1/3-1/4)+……+2[1/(n+1)-1/(n+2)]
=1+2[1/2-1/(n+2)] 也恒成立
而1+2[1/2-1/(n+2)]是关于n在N上的增函数,故当n=2时有最小值,最小值为3/2,
故1/a1+1/a2+1/a3+...+1/an+1<3/2 恒成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
729707767
2012-11-23 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4894
采纳率:50%
帮助的人:1994万
展开全部
a(n+1) = 2 a(n) + 1
∴ a(n+1) + 1 = 2 [ a(n) + 1 ]
a(n+1) + 1 = 2^n (a1+1) = 2^(n+1)
a(n+1) = 2^(n+1) ﹣ 1
。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式