已知二次函数f(x)=ax²+bx(a、b属于R)满足:①f(4+x)=f(4-x)

已知二次函数f(x)=ax²+bx(a、b属于R)满足:①f(4+x)=f(4-x)②对一切x属于R,都有f(x)小于或等于x(1)求f(x)(2)设集合A={... 已知二次函数f(x)=ax²+bx(a、b属于R)满足:①f(4+x)=f(4-x)②对一切x属于R,都有f(x)小于或等于x
(1)求f(x) (2)设集合A={x属于R丨f(x)>0} B={x属于R丨2x²-3(1+a)x+6a<0},若A交B=B,求实数a的取值范围。
展开
leoyan7
2012-11-24 · TA获得超过8336个赞
知道大有可为答主
回答量:1843
采纳率:33%
帮助的人:2447万
展开全部
满足:①f(4+x)=f(4-x)

说明对称轴x= -b/2a =4,即 8a = -b
f(x)≤x

即ax²+x(b-1)≤0
对一切x属于R

即a<0, △= (b-1)²≤0
即 b=1 ,可得 a= -1/8
f(x)= -1/8* x²+x
2)集合A={x属于R丨f(x)>0
即 -1/8* x²+x>0
解得 0<x<8
若A交B=B
当B是空集时,g(x)=2x²-3(1+a)x+6a
△= 9(1+a)²-48a= 9a²-30a+9=3(3a²-10a+3)≤0
即(3a-1)(a-3)≤0
1/3≤a≤3
当B不是空集时,g(x)=2x²-3(1+a)x+6a
g(x)在(0,8)小于0
只需满足△>0,即 (3a-1)(a-3)>0,a>3或<1/3
g(0)>0,即 6a>0,a>0
g(8)>0,解得 a< 52/9
可得 0<a<1/3或 3<a<52/9
取并集
综上 啊的取值范围是 (0,52/9)
shuidimeiyan
2012-11-24 · TA获得超过3.2万个赞
知道大有可为答主
回答量:9448
采纳率:16%
帮助的人:2241万
展开全部
  1. 二次函数f(x)=ax²+bx(a、b属于R)满足:①f(4+x)=f(4-x),说明 图像关于x=4对称

    -b/2a=4,b=-8a---------1

    ②对一切x属于R,都有f(x)小于或等于x

    有: ax²+bx≤x , ax²+(b-1)x≤0

    -(b-1)^2/4a=0----------------2

    由1、2式 得:a=-1/8 ,b=1

    f(x)=-x²/8+x

  2. f(x)>0, 解得:0<x<8

    因为A交B=B,

    当B是空集时,令g(x)=2x²-3(1+a)x+6a

    △= 9(1+a)²-48a= 9a²-30a+9=3(3a²-10a+3)≤0

    即(3a-1)(a-3)≤0

    1/3≤a≤3

    当B不是空集时,g(x)=2x²-3(1+a)x+6a

    g(x)在(0,8)小于0

    只需满足△>0,即 (3a-1)(a-3)>0,a>3或<1/3

    g(0)≥0,即 6a≥0,a≥0

    g(8)≥0,解得 a≤ 52/9

    可得 0≤a<1/3或  3<a≤52/9

    取并集

    综上:a的取值范围是 [0,52/9]

     

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
傻L猫
2012-11-24 · TA获得超过749个赞
知道小有建树答主
回答量:378
采纳率:0%
帮助的人:299万
展开全部
1)由:①f(4+x)=f(4-x)得对称轴是x=4, b/-2a=4即8a+b=0
②对一切x属于R,都有f(x)≤x 即ax²+(b-1)x ≤ 0
Δ=(b-1)² ≤0
所以b=1从而a=-1/8
f(x)= -1/8x²+x
2)求集合A: 由f(x)>0得0<x<8 所以 A=(0,8)
A交B=B可得B属于A, 即2x²-3(1+a)x+6a<0的解集应在(0,8)内
令g(x)=2x²-3(1+a)x+6a
①若Δ≤0,此时B是空集满足条件
9(1+a)²-48a≤0 解得 1/3≤a≤3
②若Δ>0, g(x)=0的两根要落在(0,8)内
g(0)≥0 6a≥0
所以 g(8)≥0 即 104-18a≥0
0<对称轴<8 0<3/4(1+a)<8
结合Δ>0 解得 0≤a<1/3或3<a≤ 52/9
综上 0≤a≤ 52/9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
life自我催眠
2012-11-24
知道答主
回答量:52
采纳率:0%
帮助的人:8.4万
展开全部
﹙1﹚f(x)= ﹙ 2﹚1/3≤a≤3
(1)∵ f(4+x)=f(4-x)∴对称轴为x=4 ∴-b=8a∴ f(x)=ax²-8ax≤x ∴(8a+1)≤0 a=-1/8 ∴﹣1/8x²+x
(2)由已知得B为A子集 ∴(1)B=∅ 即△≤0 1/3≤a≤3 (2) B≠∅∴△>0 大根≤8 小跟≥0 无解 ∴1/3≤a≤3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式