若奇函数f(x)=x³+(b-1)x²+cx的3个零点x1,x2,x3满足x1x2+x2x3+x1x3=-2010,则b+c=

Barrichello
2012-11-24 · TA获得超过6368个赞
知道大有可为答主
回答量:2109
采纳率:92%
帮助的人:1183万
展开全部
∵ f(x)是奇函数
∴ f(-x)=-f(x)
∴ 对任意的x,有-x³+(b-1)*(-x)²+c*(-x)=-x³-(b-1)x²-cx
化简,得2(b-1)x²=0
∴ b=1
原函数即f(x)=x³+cx
当f(x)=0时,x³+cx=0
x(x²+c)=0
解方程得有一解为0,另两个解为x²+c=0的根。
不妨设零点x1=0,另两个零点为x2和x3
由一元二次方程根与系数的关系,得x2x3=c
∴ x1x2+x2x3+x1x3=0+c+0=-2010
∴ c=-2010

所以,b+c=1+(-2010)=-2009

希望你能采纳。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式