已知a>0,b>0,c>0,求证bc/a,+ac/b+ab/c>=a+b+c
3个回答
展开全部
证:
bc/a+ac/b+ab/c
=abc/a²+abc/b²+abc/c²
=abc(1/a²+1/b²+1/c²)
(1/a-1/b)²≥0 1/a²+1/b²≥2/ab (1)
(1/b-1/c)²≥0 1/b²+1/c²≥2/bc (2)
(1/a-1/b)²≥0 1/a²+1/c²≥2/ac (3)
(1)+(2)+(3)
2/a²+2/b²+2/c²≥2/ab+2/bc+2/ca
1/a²+1/b²+1/c²≥1/ab+1/bc+1/ca
bc/a+ac/b+ab/c≥abc(1/ab+1/bc+1/ca)=a+b+c
bc/a+ac/b+ab/c≥a+b+c
当a,b,c为正实数时,bc/a+ac/b+ab/c≥a+b+c
bc/a+ac/b+ab/c
=abc/a²+abc/b²+abc/c²
=abc(1/a²+1/b²+1/c²)
(1/a-1/b)²≥0 1/a²+1/b²≥2/ab (1)
(1/b-1/c)²≥0 1/b²+1/c²≥2/bc (2)
(1/a-1/b)²≥0 1/a²+1/c²≥2/ac (3)
(1)+(2)+(3)
2/a²+2/b²+2/c²≥2/ab+2/bc+2/ca
1/a²+1/b²+1/c²≥1/ab+1/bc+1/ca
bc/a+ac/b+ab/c≥abc(1/ab+1/bc+1/ca)=a+b+c
bc/a+ac/b+ab/c≥a+b+c
当a,b,c为正实数时,bc/a+ac/b+ab/c≥a+b+c
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
左边=1/2(bc/a+bc/a)+1/2(ac/b+ac/b)+1/2(ab/c+ab/c)
=1/2(bc/a+ac/b)+1/2(bc/a+ab/c)+1/2(ac/b+ab/c)
≥1/2 * 2c+1/2 * 2b + 1/2 * 2a =a+b+c
用公式: a+b≥2√ab (a>0,b>0)
希望采纳
=1/2(bc/a+ac/b)+1/2(bc/a+ab/c)+1/2(ac/b+ab/c)
≥1/2 * 2c+1/2 * 2b + 1/2 * 2a =a+b+c
用公式: a+b≥2√ab (a>0,b>0)
希望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询