已知f(x-1)为奇函数,f(x+1)为偶函数,f(2008)=1,则f(4)=______
已知f(x-1)为奇函数,f(x+1)为偶函数,f(2008)=1,则f(4)=______....
已知f(x-1)为奇函数,f(x+1)为偶函数,f(2008)=1,则f(4)=______.
展开
1个回答
展开全部
∵f(x-1)为奇函数,f(x+1)为偶函数
∴f(-x-1)=-f(x-1),f(-x+1)=f(x+1)恒成立
∴在f(-x-1)=-f(x-1)中,令t=x-1,则x=t+1,故有f(-t-2)=-f(t)①
在f(-x+1)=f(x+1)中令t=x+1,则有x=t-1,故有f(t)=f(-t+2)②
由①②得-f(-t-2)=f(-t+2)③,
再令m=-t+2,则t=-m+2,代入③得f(m)=-f(m-4)=f(m-8),由此知函数的周期是8
又2008=251×8
故有f(2008)=f(0)=1
由③知f(4)=-f(0)=-1
故答案为-1
∴f(-x-1)=-f(x-1),f(-x+1)=f(x+1)恒成立
∴在f(-x-1)=-f(x-1)中,令t=x-1,则x=t+1,故有f(-t-2)=-f(t)①
在f(-x+1)=f(x+1)中令t=x+1,则有x=t-1,故有f(t)=f(-t+2)②
由①②得-f(-t-2)=f(-t+2)③,
再令m=-t+2,则t=-m+2,代入③得f(m)=-f(m-4)=f(m-8),由此知函数的周期是8
又2008=251×8
故有f(2008)=f(0)=1
由③知f(4)=-f(0)=-1
故答案为-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询