求当x趋于0时lim(1+sinx)^(2/x);lim1-cos2x/(sin^2)3x的极限;当x趋于无穷时lim(x-1)(sin1/x-1)的极限 30
展开全部
①考察两个重要极限
lim(1+sinx)^2/x
=lim(1+sinx)^(1/sinx*sinx*2/x)
=e^lim(2sinx/x)
=e²
②考察等价无穷小
x→0时,1-cosx~x²/2,sinx~x
∴lim(1-cos2x)/sin²3x
=2x²/9x²=2/9
③x→∞时,1/(x-1)→0
∴lim(x-1)(sin1/x-1)
=limsin(1/(x-1))/(1/(x-1)
=1
lim(1+sinx)^2/x
=lim(1+sinx)^(1/sinx*sinx*2/x)
=e^lim(2sinx/x)
=e²
②考察等价无穷小
x→0时,1-cosx~x²/2,sinx~x
∴lim(1-cos2x)/sin²3x
=2x²/9x²=2/9
③x→∞时,1/(x-1)→0
∴lim(x-1)(sin1/x-1)
=limsin(1/(x-1))/(1/(x-1)
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(1+sinx)^(2/x)=e^2
lim1-cos2x/(sin^2)3x=1/18
lim(x-1)(sin1/x-1)=1
lim1-cos2x/(sin^2)3x=1/18
lim(x-1)(sin1/x-1)=1
追问
可以写下过程吗?谢谢啦!
追答
lim(x→0) (1+sinx)^(2/x)
=lim(x→0) [(1+sinx)^(1/sinx)]^(2sinx/x)
=lim(x→0) [(1+sinx)^(1/sinx)]^[lim(x→0) (2sinx/x)]
=e^2
lim(x→0) 1-cos2x/(sin^2)3x
=lim(x→0) (x^2/2)/(3x)^2
=1/18
lim(x→∞) (x-1)(sin1/x-1)
=lim(x→∞) (sin1/x-1)/[1/(x-1)]
=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询