已知非负实数x,y,z满足x+y+z=1,求证: (x+y+1)^-1+(y+z+1)^-1+(x+z+1)^-1

 我来答
新科技17
2022-08-26 · TA获得超过5894个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.4万
展开全部
1/(x+y+1)=1/(1-z+1)=1/(2-z)同理1/(y+z+1)=1/(2-x)1/(x+z+1)=1/(2-y)根据柯西不等式(1+1+1)^2≥[(2-x)+(2-y)+(2-z)][1/(2-x)+1/(2-y)+1/(2-z)]带入x+y+z=1得1/(2-x)+1/(2-y)+1/(2-z)≤9/5即(x+y+1)^-1+(y+z+1)^-1+(...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式