2个回答
展开全部
设公比为q
因为a5.a3.a4成等差数列
所以2a3=a5+a4
即2a1q²=a1q^4+a1q^3
→q²+q-2=0
(q+2)(q-1)=0
因为公比q不为1
所以q=-2
Sk=a1*[1-(-2)^k]/[1-(-2)]=a1*[1-(-2)^k]/3
S(k+1)=a1*[1-(-2)^(k+1)]/[1-(-2)]=a1*[1-(-2)^(k+1)]/3
S(k+2)=a1*[1-(-2)^(k+2)]/[1-(-2)]=a1*[1-(-2)^(k+2)]/3
2Sk=2a1*[1-(-2)^k]/3=2a1/3+(-2)^(k+1)/3
S(k+2)+S(k+1)=a1*[1-(-2)^(k+2)]/3+a1*[1-(-2)^(k+1)]/3
=2a1/3+2*(-2)^(k+1)/3-(-2)^(k+1)/3
=2a1/3+(-2)^(k+1)/3
因为2Sk=S(k+2)+S(k+1)。
所以对任意k(正数),S(k+2),Sk,S(k+1)成等差数列
因为a5.a3.a4成等差数列
所以2a3=a5+a4
即2a1q²=a1q^4+a1q^3
→q²+q-2=0
(q+2)(q-1)=0
因为公比q不为1
所以q=-2
Sk=a1*[1-(-2)^k]/[1-(-2)]=a1*[1-(-2)^k]/3
S(k+1)=a1*[1-(-2)^(k+1)]/[1-(-2)]=a1*[1-(-2)^(k+1)]/3
S(k+2)=a1*[1-(-2)^(k+2)]/[1-(-2)]=a1*[1-(-2)^(k+2)]/3
2Sk=2a1*[1-(-2)^k]/3=2a1/3+(-2)^(k+1)/3
S(k+2)+S(k+1)=a1*[1-(-2)^(k+2)]/3+a1*[1-(-2)^(k+1)]/3
=2a1/3+2*(-2)^(k+1)/3-(-2)^(k+1)/3
=2a1/3+(-2)^(k+1)/3
因为2Sk=S(k+2)+S(k+1)。
所以对任意k(正数),S(k+2),Sk,S(k+1)成等差数列
参考资料: 1039418856
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询