如图所示,三角形ABC中,I是内心,AI的延长线交BC于D,交三角形ABC的外接圆于E。求证;【1】IE=EC;

[2]IE²=ED×AE... [2]IE²=ED×AE 展开
飘渺的绿梦2
2012-12-12 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4286
采纳率:84%
帮助的人:1704万
展开全部
第一个问题:
∵A、B、E、C共圆,∴∠BAE=∠ECD。
∵I是△ABC的内心,∴∠BAE=∠EAC,∴∠ECD=∠EAC。
∵I是△ABC的内心,∴∠ACI=∠DCI。
由三角形外角定理,有:∠EIC=∠EAC+∠ACI=∠ECD+∠DCI=∠ECI,∴IE=EC。

第二个问题:
∵∠ECD=∠EAC、∠CED=∠AEC,∴△ECD∽△EAC,∴EC/AE=ED/EC,而IE=EC,
∴IE/AE=ED/IE,∴IE^2=ED·AE。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式